25,256 research outputs found

    Mining Frequent Neighborhood Patterns in Large Labeled Graphs

    Full text link
    Over the years, frequent subgraphs have been an important sort of targeted patterns in the pattern mining literatures, where most works deal with databases holding a number of graph transactions, e.g., chemical structures of compounds. These methods rely heavily on the downward-closure property (DCP) of the support measure to ensure an efficient pruning of the candidate patterns. When switching to the emerging scenario of single-graph databases such as Google Knowledge Graph and Facebook social graph, the traditional support measure turns out to be trivial (either 0 or 1). However, to the best of our knowledge, all attempts to redefine a single-graph support resulted in measures that either lose DCP, or are no longer semantically intuitive. This paper targets mining patterns in the single-graph setting. We resolve the "DCP-intuitiveness" dilemma by shifting the mining target from frequent subgraphs to frequent neighborhoods. A neighborhood is a specific topological pattern where a vertex is embedded, and the pattern is frequent if it is shared by a large portion (above a given threshold) of vertices. We show that the new patterns not only maintain DCP, but also have equally significant semantics as subgraph patterns. Experiments on real-life datasets display the feasibility of our algorithms on relatively large graphs, as well as the capability of mining interesting knowledge that is not discovered in prior works.Comment: 9 page

    Holographic Van der Waals phase transition for a hairy black hole

    Get PDF
    The Van der Waals(VdW) phase transition in a hairy black hole is investigated by analogizing its charge, temperature, and entropy as the temperature, pressure, and volume in the fluid respectively. The two point correlation function(TCF), which is dual to the geodesic length, is employed to probe this phase transition. We find the phase structure in the temperatureβˆ’-geodesic length plane resembles as that in the temperatureβˆ’-thermal entropy plane besides the scale of the horizontal coordinate. In addition, we find the equal area law(EAL) for the first order phase transition and critical exponent of the heat capacity for the second order phase transition in the temperatureβˆ’-geodesic length plane are consistent with that in temperatureβˆ’-thermal entropy plane, which implies that the TCF is a good probe to probe the phase structure of the back hole.Comment: Accepted by Advances in High Energy Physics(The special issue: Applications of the Holographic Duality to Strongly Coupled Quantum Systems
    • …
    corecore